

King Fahd University of Petroleum & Minerals Information & Computer Science Department

ICS 253: Discrete Structures I

Advanced Counting Techniques

Reading Assignment

- K. H. Rosen, *Discrete Mathematics and Its Applications*, 6th Ed., McGraw-Hill, 2006.
 - Chapter 8 (Sections 8.1 and 8.2 up to the end of page 502)

Section 8.1: Applications of Recurrence Relations

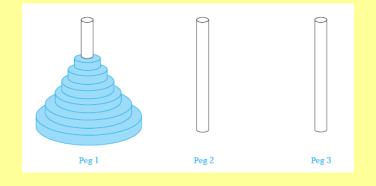
- Many counting problems cannot be solved easily using the methods discussed in Chapter 6.
- We will see how recurrences can be used to solve such problems.

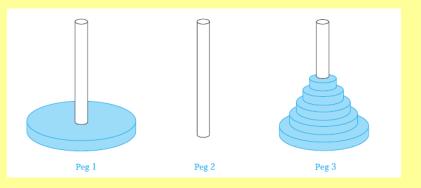
Example 1

• A pair of rabbits does not breed until they are 2 months old. After they are 2 months old, each pair of rabbits produces another pair each month, as shown in the Figure. Find a recurrence relation for the number of pairs of rabbits on the island after *n* months, assuming that no rabbits ever die.

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
		1	0	1	1
		2	0	1	1
		3	1	1	2
		4	1	2	3
	0 6 0 6 0 0 0	5	2	3	5
0 40 0 40 0 40	0 10 0 10 0 10	6	3	5	8

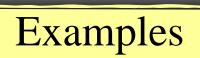
Towers of Hanoi





Examples

Find a recurrence relation and give initial conditions for the number of bit strings of length *n* that do not have two consecutive 0s. How many such bit strings are there of length five?



- Q5 Page 494: Find a recurrence relation for the number of bit strings of length n that contain a pair of consecutive 0s.
 - What are the initial conditions?
 - How many bit strings of length seven contain two consecutive 0s?

Examples

A computer system considers a string of decimal digits a valid codeword if it contains an even number of 0 digits. For instance, 1230407869 is valid, whereas 120987045608 is not valid. Let a_n be the number of valid n-digit codewords. Find a recurrence relation for a_n.

Examples

- Find a recurrence relation for C_n, the number of ways to parenthesize the product of n + 1 numbers, x₀. x₁. x₂....x_n, to specify the order of multiplication.
 - What is C2? C3?
 - This sequence is called the Catalan Numbers.

Section 8.2:Solving Linear Recurrence Equations

- We will only consider solving linear homogeneous recurrence equations with constant coefficients.
 - Linear nonhomogeneous recurrence relations with constant coefficients are ommitted.
 - It will be enough for us, especially those related to estimating the complexity of recursive algorithms.

Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

• A linear homogeneous recurrence relation of degree *k* with constant coefficients is a recurrence relation of the form

$$a_{n} = c_{1}a_{n-1} + c_{2}a_{n-2} + \dots + c_{k}a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Solving Linear Homogeneous Recurrence Relations with Constant Coefficients (k=2)

Theorem 1:

Let c_1 and c_2 be real numbers. Suppose that $r^2 - c_1r - c_2 = 0$ has two distinct roots r_1 and r_2 . Then the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1a_{n-1} + c_2a_{n-2}$ if and only if $a_n = \alpha_1r_1^n + \alpha_2r_2^n$ for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

Theorem 2:

Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that $r^2 - c_1r - c_2 = 0$ has only one root r_0 . A sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1a_{n-1} + c_2a_{n-2}$ if and only if $a_n = \alpha_1r_0^n + \alpha_2nr_0^n$, for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

Example 1

Q2, pp 508: Solve these recurrence relations together with the initial conditions given.
(d) a_n = 4a_{n-1} - 4a_{n-2} for n ≥ 2, a₀ = 6, a₁ = 8.

Example 2

15

Q2, pp 508: Solve these recurrence relations together with the initial conditions given.
(f) a_n = 4a_{n-2} for n ≥ 2, a₀ = 0, a₁ = 4.

Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

• Theorem 3: Let c_1, c_2, \ldots, c_k be real numbers. Suppose that the characteristic equation

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k} = 0$$

has k distinct roots $r_1, r_2, ..., r_k$. Then a sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_{n} = c_{1}a_{n-1} + c_{2}a_{n-2} + \dots + c_{k}a_{n-k}$$

if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \ldots + \alpha_k r_k^n$$

for n=0,1, 2, ... where $\alpha_1, \alpha_2, \ldots, \alpha_k$ are constants.